Through-Hole Microarrays: A High Throughput Platform for Synthesis, Storage and Screening

Tanya Kanigan, BioTrove Inc. Cambridge, MA

LRIG Mid Atlantic Chapter, September 2002 Meeting September 5, 2002, Bridgewater, NJ

BioTrove Inc.

 Privately-held biotechnology company, commenced operations October 2000.

Platforms

- Living Chip[™]
 - Technology developed at MIT and exclusively licensed to BioTrove.
 - Massively parallel nanofluidics.
 - High density nanoliter library storage and analysis
- Lab-on-a-Tape[™]
 - developed in-house and wholly owned by BioTrove.
 - Fast, automated serial assay initiation and analysis.
 - Detection of native molecular properties

Miniaturizing Microtiter Plate Technology

Bio rove

The Living Chip[™] – A nanotiter plate

24,576 through-holes

Living Chip[™] Screening System

Dip Loading of Common Reagents

Hydrophobic exterior surfaces prevent chemical cross-talk between channels and produce positive menisci when the chips are filled.

Massively Parallel Assay Initiation

Assay Miniaturization

Product Formation (F)

BioTrove

β-Galactosidase inhibition chip vs. plate

Similar IC50 values in 200 times smaller assay volume!

$$IC50_{Plate} = 1.0 \ \mu M$$
$$IC50_{Chip} = 1.3 \ \mu M$$

Fluorescence image taken an array loaded with 1 µM hydrolyzed fluorescein conjugate casein.

Assay Development Reformatter.

Combinatorial Synthesis Demo

- A1 2-nitrobenzaldehyde
- A2 5-nitro-2-furaldehyde

A3 glucose

- A4 4-nitrobenzaldehyde
- A5 aminomethyl coumarin
- B1 4-bromophenylhydrazine hydrochloride
- B2 4-cyanophenylhydrazine hydrochloride
- B3 aminoguanidine bicarbonate
- B4 3-nitrophenylhydrazine hydrochloride
- B5 2,4-dichlorophenylhydrazine hydrochloride

A small (25-member) hydrazone library was produced in a 100-channel chip by reacting aqueous solutions of 5 aldehydes with 5 hydrazines (see *J. Chem. Ed.*, **78**, 784 (2001)).

Replicating/Diluting

Parallel Reformatting

Sample Recovery: Picker

Sample Recovery- Puffing

Blow Patterns

Environmental Control

Wetbox

Jigs

Cell Culture

Yeast cells (S. cerevisiae) growing in single channels.

~1000 cells per channel Cell viability assay: MitoTracker Green FM yeast mitochondrial stain

Mammalian Cell Culture

- 35 nl per channel cell culture volume
- 75 hrs cell culture

Dip Loading Statistics

Number of cells loaded into each channel follows a Poisson distribution!

160 pos cells/mL 31 positives 1.24%

1600 pos cells/mL 310 positives 12.4%

16 000 pos cells/mL 1905 positives 76.2%

Biocatalyst Discovery

Dip load mutagenized bacillus library ~10⁴ cells/mL or 0.5 cells/channel

Stack to add substrate (10 µg/ml F:caesin)

Cell culture	
(24 hrs @ 37°C)	

Mutants with increased protease activity yield greater fluorescence rate signal.

Data Analysis

Primary Screen Secondary Screen 2992 6/5c 2720 Fluorescence (arb. units) 5/3a 2178 6/2d Strain 6/4d 1360 5/1d 6/3d 544 parental 0.0 02 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Relative Rate 1 2 3 4 5 7 8 6 Time (minutes)

Primary Screen: Image data was processed to collect channel fluorescent intensity as a function of time. Reaction rates were then used to pick the top clones from each chip.

Secondary Screen: Top clone from each chip was purified, grown overnight in 96-well plate and the hydrolysis activity of the medium measured.

Results: Mutants with improved protease expression were isolated using the Living Chip.

Biocatalyst Library Activity

Activity Histogram

Hit Selection

Per plate CVs for normalized cell positive population is 20%.

37 clones had activity 5 to15-fold above average.

Technology Scale-up

Next generation: 100,000 channel chip = 260 384 well microtiter plates

- Array is dip loaded from dilute E. coli suspension (2000 cells/ml) expressing recombinant human proteins..
- Clones were cultured for protein expression overnight.
- Expressed-protein adsorbed non-specifically to the activated walls of the channel and was subsequently probed using an HRP-conjugated antibody.
- The ELISA was developed with a fluorescent substrate before imaging.

Small Molecule Library Screen

• 95 Chembridge compounds were diluted to 200 uM in Caspase Assay Buffer and reformatted into chip (56 nl/well).

- 200 uM Caspase inhibitor (DEVD) randomly inserted into five channels.
- Z-prime = 0.72 @ 30% completion.
- Signal/Buffer = 15
- Signal/Noise = 51

Genomic Assays

Wild Type Probe

Third Wave Biplex Invader Assay

2.5 ng genomic DNA per channel (≅1000 copies)

Library Storage

Storage of a one million compound librar,

Living Chip

40 x 25k plates 50 nl per channel 10 copies → 0.0002 m³ Total fluid volume = 0.5 liters

384-well plates

2,604 plates 25 µl per well

10 copies \rightarrow 4 m³ Total fluid volume = 250 liters

Chip Storage Advantages

- High density, nanoliter storage
 - reduces storage space needs and material waste
 - facilitates distribution of library
- Ideal format for low temperature storage
 - chips can be submerged directly into liquid nitrogen
 - affordable storage at low temperature, inert conditions.
 - small sample volumes freeze rapidly
 - libraries can be aliquoted into chips -> freeze/thaw only once!
- Simple interface to microtiter plate systems
 - provides for easy and rapid conversion.
- Integrated screening
 - screen directly from chip, or transfer to microtiter plate first.

Example Protease Inhibitor Screen

- Target: UV FRET-labeled peptide.
- Z-prime consistently > 0.55 @ 30% inhibition.
- Three hundred compounds analyzed.
- Assay volume = 54 nanoliters.
- Storage for five days @ -20°C.

timepoint

Distribution of Inhibition Data

Without Storage

With Storage

Bio rove

Chip

Bulk

Correlation of duplicates

Biol rove

Storage

Living Chip™

Massively parallel fluidics

An integrated, broadly applicable platform for nanovolume synthesis, storage and screening providing

- Isolated nanoliter reaction volumes.
- Simple automated interface with microplates.
- Assay flexibility and speed.
- Desktop-sized instrumentation.
- No evaporation.

Technology Attributes

- Faster time to market
 - Ultra high throughput (>10⁶ meas./day)
 - Use less target -> Decreased time for target production.
- Saves precious compound library, target and reagents.
 - Isolated, nanoliter reaction volumes.
- Easy access to locally stored libraries.
 - Simple and automated interface to microplates.
- Enables substantially larger libraries (> 10-fold)
 - High density, nanovolume storage.
 - More lead compounds.
 - Data sets for building better predictive models.

Applications and Future Directions

Integrated Library Storage and Screening

- HT toxicity characterization of libraries (>10⁶/day).

- HT drug-drug interaction assays.

Molecular Discovery - Diversity Screening & Evolution

- Rapid analysis of large diversity libraries (>10⁷ reactions/person/day).

Functional Genomics & Proteomics

- HT screening of gene knock-out & gene expression cell libraries.

Molecular Diagnostics

- Single chip genomic assays.

Process Optimization

- protein crystal growth
- screen for drug polymorphs

• Synthesis - Catalysis Discovery to Speed Chemistry

- Rapid lead optimization
- Higher quality, more diverse libraries

Future Directions

- Scale-Up of Reformatting
 - Multiple copies of a 25K plate in < 1hr.
- More Assay Modes
 - Polarization, time-gated, radiometric, label-free detection.
 - ADME-Tox assays (CaCo2, Alamar Blue, others).
 - Rapid initiation (e.g. Fura-2)
- Greater automation
 - Screen 1 to 10 million data points per day.
- On-chip Synthesis of molecules/probes

Acknowledgements

BioTrove, Inc.

<u>Assay Development</u> Kristine Stone, Elen Ortenberg, Tara Heitner, Tom Morrison.

Chip Technoloy

Colin Brenan, Robert Hess, John Linton, Holly Allen Donald Green, Leila Hasan, Arrin Katz, Linda Kiley, Mahima Santhanam, Karl Yoder

N.I.S.T. Advanced Technology Program Award No. 70NANB1H3003